

LEAD FREE, SHORT RANGE, FRANGIBLE AND TRACER SMALL ARMS TRAINING AMMUNITION:

A QUANTUM ADVANCE IN TECHNOLOGY

Presented by:

SNC INDUSTRIAL TECHNOLOGIES INC. (SNC IT)

Contacts:

Jean-Pierre Drolet Ph.D. Business Development R&D

Phone: (514) 582-6268

Fax: (514) 581-0275 - E-Mail: droletj@tisnc.snc-lavalin.com

Brian Berger, General Manager Simunition Ltd, a Division of SNC IT, Avon, Connecticut

Phone: (860) 677-5053

Fax: (860) 677-5472 – E-Mail: simusa@pcnet.com

NDIA, 1998 SMALL ARMS ANNUAL CONFERENCE

June 17, 1998

TABLE OF CONTENTS

1.	ACKNOWLEDGEMENT1
2.	GENERAL CHARACTERISTICS2
3.	MAIN OBJECTIVES4
4.	STATUS ON THE 7.62MM SRTA PROGRAM5
5.	INTENDED MISSION AND FUNCTION6
6.	PHYSICAL CHARACTERISTICS7
7.	THE "PENCIL" TRACER TECHNOLOGY: A NEW CLASS OF LIGHT EMITTING PROJECTILE8
8.	CHARACTERISTICS OF THE TRACER TECHNOLOGY9
9.	BALLISTIC CHARACTERISTICS10
10.	GUIDELINES FOR SAFETY AND USE14
11.	CONCLUSION15

1. ACKNOWLEDGEMENT

Thanks to my colleagues for their contribution to this program, particularly:

♦ Ms Louise Guindon

Technical Director, Small Arms Ammunition, responsible for the supervision of the R&D work.

♦ Ms Danielle Tremblay

Responsible for adopting the pencil tracer technology to the frangible projectile compound.

♦ Mr. Patrick Lizotte

Responsible for optimizing the frangible compound for both ball and tracer projectiles.

2. GENERAL CHARACTERISTICS

- ➤ The technology described in this paper has been developed for 7.62mm ammunition. However, it can well be applied to other small arms ammunition.
- ➤ Development works are underway to scale down the technology to 5.56mm caliber.
- The product, known under the trade name Short-Stop® ammunition, is based on a new projectile design with forward fins. A schematic representation of the product is shown in Figure 1.
- The fins introduce "reverse" spin to the rotation caused by the rifling, and thus, the resulting "reverse" spin causes the projectile to become unstable very quickly.

FIGURE 1 – Schematic representation of a 7.62mm SRTA-T projectile

3. MAIN OBJECTIVES

The objectives of the R&D program conducted at SNC IT were as follows:

- ➤ To develop a short range training ammunition (SRTA), having a maximum range of about 400-500 meters compared to the maximum range of standard 7.62mm ball ammunition which is about 4,000 meters.
- > To develop "green" and frangible ammunition.
- > To adopt the pencil tracer technology to frangible compound.
- To match the accuracy of service rounds to 100 meters.

4. STATUS ON THE 7.62MM SRTA PROGRAM

- ➤ Generic qualification tests were conducted at ARDEC a few years ago following NATO 7.62mm D150 test procedures.
- An initial type qualification test was conducted by ARDEC and APG in early 1998.
- ➤ A full type qualification test should be conducted before the end of FY98.
- The product should be used for training purposes to support, for example, the MOUT program.
- ➤ Fielding of the product should take place in FY99 or FY00.

5. INTENDED MISSION AND FUNCTION

The 7.62mm SRTA ammunition solves many problems related to the safety template area within urban environments where there are few places and opportunities to train.

- > Realistic training for various training scenarios can be achieved:
 - Reactive steel targets,
 - Shooting houses,
 - Outdoor ranges to reduce danger zones imposed by zoning laws and environmental restrictions,
 - Indoor ranges to reduce environmental maintenance costs,
 - Improvised training facilities with portable backstops,
 - Sniper initiated assault training at facilities using improvised or portable bullet traps.

6. PHYSICAL CHARACTERISTICS

- > Cartridge case:
 - Brass (copper alloy 70/30)
- > Primers:
 - Lead free primers available
 - Heavy metal free primers available
- > Propellant:
 - Double base propellant
- > Projectile:
 - Molded copper and nylon compound; the concentration in volume and weight being optimized to minimize projectile break-up.
 - Patented by SNC IT
- > Tracer:
 - A pyrotechnic column formed of zirconium powder, potassium perchlorate and a suitable binder.
 - Patented by LSI / USA

7. THE "PENCIL" TRACER TECHNOLOGY: A NEW CLASS OF LIGHT EMITTING PROJECTILE

- Fabrication of the tracer cord:
 - > An elongated hole in a cord of soft metal is made,
 - > The hole is filled with a pyrotechnic composition,
 - The diameter of the cord is reduced by extrusion to the desired size.
- ♦ <u>Introduction of the tracer cord into the projectile</u> body:
 - > The cord is cut to the required length (slugs),
 - > The slugs are inserted into the interior cavity of shaped projectiles,
 - The slugs are compacted into the projectile body and they are hold in place by mechanical or chemical means.

8. CHARACTERISTICS OF THE TRACER TECHNOLOGY

- ➤ Advantages of "pencil tracer" technology have been identified. They are:
 - Full luminosity and viewing under **DAY** and **NIGHT** conditions,
 - High reliability and simplicity of design,
 - Large reduction in caloric output. The "cool light" transmits less than 1/50th of the heat to the outside atmosphere as compared to standard tracer ammunition,
 - Enhanced safety,
 - The heat loss to the walls controls the linear burning rate.

9. BALLISTIC CHARACTERISTICS

a) Maximum range

- Measured and calculated values: less than 550 meters for a quadrant elevation of 30°
- Methods of evaluation: radar tracking and calculations or recovery of projectiles on a suitable runway space.

b) Precision:

- 7.5cm (3in) mean radius at 100 meters

c) Trajectory:

- The 7.62mm SRTA/SRTA-T projectiles match the trajectory of ball round (M80) up to a range of 100 meters; ± 1 mils at 100 meters.

9. BALLISTIC CHARACTERISTICS ... cont'd

d) Function and Casualty:

Temperature	Cycling rate: rounds / min	Weapon
70°F	532 – 560	M60
125°F	543 – 585	M60
- 4°F	538 – 555	M60 ,

The rounds function the weapons without any stoppage at all temperatures.

e) Noise Level

- Test conducted in accordance with TOP-1-2-608
- Noise level between M80 and the SRTA was found to be less than 1dB difference at each weapon position namely:

- 5 meters rear of muzzle: 138 dB

- 5 meters right of muzzle: 152 dB

9. BALLISTIC CHARACTERISTICS ... / cont'd

f) EPVAT

	SRTA Ammunition	Reference ammunition
Chamber pressure	185 Mpa	365 Mpa
Velocity at 24m	800 m/s	838 m/s

g) Waterproofness

- Submerged rounds into water were subjected to a 50 Kpa vacuum for 30 seconds.
- Results show that the SRTA design with or without waterproofing sealant compound were 100% waterproof.

9. BALLISTIC CHARACTERISTICS ... / cont'd

h) Ricochet

- No significant fragments were recovered after impacting steel targets placed 5 meters from the muzzle of M60 machine guns at 0° and 30° obliquity.

i) Recoil

- Less than or equivalent to that obtained with service ammunition.

10. GUIDELINES FOR SAFETY AND USE

- No specialized procedures, techniques, tools as test equipment are required to train with Short-Stop® ammunition.
- > This ammunition can be lethal.
- ➤ It is not recommended to stand 5 yards to the side of a target since metallic dust from impact of the projectile could cause an injury.
- Following sustained fire, the chamber should be emptied if there is a long delay until the next firing takes place.
- ➤ A minimum backstop plate of 1/4 inch armoured steel is recommended.

11. CONCLUSION

- The new Short-Stop® lead free, short range, frangible and tracer 7.62mm ammunition represents a quantum advance in the small arms ammunition technology.
- The same technology could be applied to other small arms weapon / ammunition systems.
- > The initial and the final development phases are completed.
- ➤ The SRTA ball ammunition has already been industrialized.
- > The product is safe to use and meets or exceeds environmental regulations.
- ➤ More detailed technical information can be obtained upon request.
- ➤ A firing demonstration will be done during the last session of this conference.